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Abstract—Intra-operative brain shift decreases the accuracy of
neuronavigation systems based on pre-operative images. In this
paper, this problem is addressed by calculating an estimation of
brain shift which can be employed to update the pre-operative
brain images. Therefore, the precision of navigation can be
improved. In this regard, a brain shift estimation method is
proposed using an Atlas of brain deformations and Constrained
Kalman Filter (ACKF). In addition, it is proved that the obtained
ACKF estimation is the best unbiased minimax estimation when
the risk function is the estimation error variance. Furthermore,
a comparison is performed between ACKF and two existing
methods, namely Constrained Kalman Filter (CKF) and atlas-
based method. The comparison demonstrates that ACKF results
in a more accurate estimation and needs less computation time.
Finally, the supremacy of the proposed ACKF method with
respect to CKF and atlas-based method is illustrated through
simulation.

Index Terms—Brain shift, image guided neurosurgery, con-
strained Kalman filter, atlas-based method, finite element method.

I. INTRODUCTION

Image Guided Neurosurgery (IGNS) systems are employed
in neurosurgery and help surgeons in surgical visualization
and navigation. Hence surgeons can remove tumors without
damaging healthy brain tissues surrounding them. Most of
IGNS systems only utilize pre-operative images like pre-
operative MRI (pMRI) or pre-operative CT (pCT). However,
due to many factors, like tumor resection, gravity, edema,
pharmacologic responses, and drainage of cerebrospinal fluid
(CSF), the brain deforms during surgery. This brain deforma-
tion is known as “brain shift” and degrades the accuracy of
IGNS systems [1], [2], [3].

In order to compensate brain shift, two main candidates
are intra-operative medical imaging and computational model-
based techniques. The first method includes intra-operative
MRI (iMRI) [4], intra-operative CT (iCT) [5], and intra-
operative Ultrasound (iUS) [6]. iMRI is cumbersome and
expensive, and iCT is not very attractive due to high doses of
radiation. While iUS provides real-time images and is much
more cheaper than iMRI and iCT, its resulting images suffer
from the lack of image clarity and have lower soft tissue
contrast. In the second approach, biomechanical models of the
brain are employed to improve pre-operative images. Towards
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this end, the solutions of model are driven for some boundary
conditions and utilized to deform pre-operative images to their
current position. Two challenges of this approach are that
the boundary conditions in the operating room are unknown,
and computational time associated with estimation techniques
should meet the real-time constraints of neurosurgery. To over-
come the first challenge, sparse intra-operative information
obtained by imaging the exposed brain surface are employed
in [7], [8], [9], [10]. In [7], the estimation of brain shift is
obtained using a sparse extrapolative technique. The brain
model is derived by cortical surface deformations obtained
from laser range scanner in [8], [9]. In [10], the boundary
conditions are obtained from data of laser range scanner and
the brain model is solved by the extended finite element
method. The second challenge is considered in [11], [12], [13]
and is addressed by employing adaptive dynamic relaxation
method [11], atlas of brain deformations [12], and iterative
methods [13].

In addition to sparse intra-operative data, it is proposed
in [12] to utilize a series of pre-operative computed brain
deformations for obtaining a more accurate estimation with
less computational cost. This method, known as atlas-based
method, has two steps: first, an “atlas” of brain deformations,
which is a collection of brain deformations based on possible
boundary conditions in the operating room, is computed pre-
operatively; then, the atlas is matched intra-operatively with
the sparse data using a constrained linear inverse model.
The matching method between the atlas and sparse data is
improved in [14], [15], and is employed in [16] to develop
an automated process for near real-time brain shift estimation.
In order to investigate the method using experimental data,
an evaluation in clinical cases is performed in [17] that has
shown encouraging results.

A powerful tool for solving estimation problems is Kalman
filter, and it has been shown that this technique yields promis-
ing results in a wide variety of applications, such as state
estimation of power systems [18], control of microgrippers
[19], etc. An extension of the Kalman filter, constrained
Kalman filter, results in a more accurate estimation when there
exist linear equality constraints on the variables [20], and it is
utilized for solving different estimation problems in [21], [13].
A method for localization of autonomous underwater vehicles
in the presence of unknown ocean currents is presented in
[21]. In our previous work [13], sparse intra-operative data is
employed together with the Constrained Kalman Filter (CKF)
to estimate boundary conditions of the brain model. Then,
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to improve the computational time of estimation, a recursive
method is proposed.

The main contribution of this paper is to estimate brain shift
by combining the information of an Atlas of brain deforma-
tions and Constrained Kalman Filter (ACKF). The proposed
ACKF method employs sparse intra-operative measurement
of the exposed brain surface and a biomechanical model of
brain to estimate brain shift. It is shown that the resulting
estimation is the best minimax estimation when the covariance
of boundary conditions of the model is unknown. Then, ACKF
is compared with two existing methods, one of which uses
the same computing method, i.e. CKF, and the other uses
the same information sources, i.e. the atlas-based method,
and it is demonstrated that ACKF results in a more accurate
estimation. In addition to accuracy, ACKF inherently has a
lower computational cost. Simulation results are also presented
by using finite element method to verify the claims.

II. MATERIALS AND METHODS

Biot’s consolidation theory is originally developed to rep-
resent biphasic soil consolidation [22], and is utilized in [23]
as the governing equations of brain. In the next section, this
model which is selected as the model of brain is introduced;
afterwards, the proposed estimation method and its properties
are stated.

A. Biomechanical Model

The biphasic model obtained from Biot’s consolidation
theory assumes the continuum as a porous solid tissue ma-
trix infused with an interstitial fluid. Two sets of equations,
equations of linear elasticity for the solid matrix and Darcy’s
law for the fluid pressure, are coupled to build this model as
[24]:

∇ ·G∇u+∇ G

1− 2ν
(∇ · u)− a∇p = (ρt − ρf ) g (1a)

a
∂

∂t
(∇ · u) + 1

S

∂p

∂t
−∇ · k∇p = Ψ (1b)

where u and p are the displacement vector and intersti-
tial pressure to be computed, and other material properties
are summarized in Table I [12]. Mechanical equilibrium is
expressed by (1a), and it is dependent on surface forces
and displacements, interstitial fluid pressure gradient, and
changes in tissue buoyancy forces. The buoyancy forces, which
counteract gravitational forces, intra-operatively reduce due to
CSF drainage. As a result, the brain deforms, and this effect is
expressed on the right-hand side of (1a) [25]. The relationship
between the time rate of change of volumetric strain and
fluid pressure is also presented by (1b). For the brain, it is
always assumed that the interstitial fluid is incompressible and
saturates the tissue; therefore, the terms a and 1/S are taken
equal to one and zero, respectively [12].

Model (1) explains the time-evolution of u and p. However,
the brain tissues are stationary when sparse intra-operative in-
formation is obtained. In other words, linear elastic mechanical
behavior of the brain is important in brain shift estimation
problem [26], [27]. Therefore, the steady state form of (1)

TABLE I: Parameters used in the biphasic model.

Parameter Description Value

G Shear modulus 724 Pa
ν Poisson’s ratio 0.45

a
Ratio of fluid volume extracted
to change in solid volume 1

ρt Tissue density 1000 kg/m3

ρf Fluid density 1000 kg/m3

1
S

Fluid that can be forced into
the tissue under constant volume 0

k Hydraulic conductivity 1× 10−10 m3s/kg
Ψ Pressure source strength 0 Pa/s

needs to be considered for estimating brain shift, and it can be
solved numerically by employing the Galerkin’s finite element
method (FEM) to get

Kx = b (2)

where K ∈ Rn×n is the stiffness matrix that contains the
geometric and material behavior, x ∈ Rn represents discrete
values of u and p at FEM mesh nodes, and b ∈ Rn includes
boundary condition information which is unknown in the
operating room [23], [27]. Furthermore, n is the total number
of degrees of freedom in the entire domain and is equal to
the number of variables, 3 displacements and one pressure,
multiplied by the number of nodes. It is worth to mention that
K is a full rank matrix which is a consequence of employing
a valid FEM and proper boundary conditions [28].

B. Estimation Method
In order to estimate brain shift, two sources of informa-

tion, sparse intra-operative measurement of the exposed brain
surface and a pre-operative atlas of brain deformations, are
utilized in this paper. The sparse intra-operative data, y ∈ Rm,
is related to x by a full row rank matrix C ∈ Rm×n as follows
[29]:

y = Cx. (3)

To construct the atlas, possible boundary conditions in the
operating room are utilized pre-operatively to compute the
solutions of brain model. Then, the obtained pre-operative
solutions are assembled in a matrix M ∈ Rn×l (the atlas)
where l is the number of solutions. In other words, the ith
column of M is the solution of (1) for the ith boundary
condition. Intra-operative brain shift is considered as a linear
combination of the computed solutions as [12]:

x = Mα (4)

where α ∈ Rl is the unknown vector of regression coefficients.
To estimate brain shift, the vector b is considered as a

Gaussian random vector with known mean vector b̄ and
unknown covariance matrix [13]. This assumption is valid
because b includes the applied forces to the brain which can
be considered as random signals, and by using (2) and (4), one
can conclude that x and α are also random vectors. Therefore,
the relationships between the mean vector of x , x̄, the mean
vector of α, ᾱ, and b̄ are as follows:

x̄ = Mᾱ

b̄ = KMᾱ.
(5)
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Fig. 1: Overall procedure for brain shift compensation.

Since the boundary conditions are unknown in brain shift es-
timation problem, it is reasonable to estimate b, which includes
the boundary conditions, and then calculate x. By considering
this approach known as inverse method, the estimation of b,
b̂, can be considered as follows:

argmin
b̂

E[(b− b̂)T (b− b̂)]. (6)

To use the atlas, (2) and (4) should be substituted in (6) which
results in

argmin
α̂

E[(KMα−KMα̂)T (KMα−KMα̂)] (7)

where α̂ is the estimation of α. In addition to (7), the resulting
estimation should satisfy (3). Therefore, α̂ can be obtained
from the following constrained optimization problem

argmin
α̂

E[(KMα−KMα̂)T (KMα−KMα̂)]

subject to y = CMα̂.

To find the solution of optimization problem, one needs to
consider the Lagrangian of the constrained problem as follows:

L = E[(KMα−KMα̂)T (KMα−KMα̂)]

+ 2λT (y −CMα̂) .
(8)

where λ ∈ Rm is the Lagrange multiplier vector. Let the
probability density function of α be f (α), then we can rewrite
L as:

L =

∫ ∞

−∞
αTFαf (α) dα− 2α̂TF

∫ ∞

−∞
αf (α) dα

+ α̂TFα̂

∫ ∞

−∞
f (α) dα+ 2λT (y −CMα̂)

where
F := MTKTKM . (9)

Noting that the second and third integrals are equal to ᾱ and
one respectively, α̂ should satisfy the following equations

∂L

∂α̂
= −2Fᾱ+ 2Fα̂− 2MTCTλ = 0

∂L

∂λ
= 2 (y −CMα̂) = 0.

Solving these equations for λ and α̂ results in

λ = (CMF−1MTCT )−1 (y −CMᾱ)

α̂ = ᾱ+ F−1MTCT (CMF−1MTCT )−1 (y −CMᾱ) .
(10)

By utilizing the obtained α̂ from (10) and (9), ACKF estima-
tion x̂ACKF can be found from (4) and (5) as follows:

x̂ACKF = x̄+M
(
MTKTKM

)−1
MTCT

× (CM
(
MTKTKM

)−1
MTCT )−1 (y −Cx̄) .

(11)
It should be mentioned that for obtaining x̄, either it can
be chosen equal to zero or some information regarding the
boundary conditions in the operating room can be used intra-
operatively. For example, one can assume that the gravity and
CSF drainage are the reasons for x̄ [13]. Note that in the
operating room, an approximation of this information can be
provided by the surgeon, and the calculation of x̄ does not
take much time since the brain model needs to be solved
only once. On the other hand, for the solution exists, the
number of pre-operative estimations of brain shift, l, should be
m ≤ l ≤ n, and the matrix M should be full column rank. In
other words, the utilized boundary conditions for constructing
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the atlas should be linearly independent. However, if this
condition is not satisfied, the employed boundary conditions
can be modified or the Tikhonov regularization method [30]
can be used to obtain an approximation of ACKF estimation.

A schematic of pre- and intra-operative steps for brain shift
compensation using ACKF estimation is shown in Figure 1.
Pre-operative brain images are usually captured one day or
more before surgery and utilized for constructing a patient-
specific FE model [8]. Based on pre-operative planning, ap-
proximate head orientation and craniotomy size are obtained
and used for building the output model (3). Moreover, possible
conditions in the operating room are employed for generating
different boundary conditions; and the solutions of FE model
for these boundary conditions build the atlas [12]. Intra-
operatively, images of exposed brain surface are acquired and
used with the FE modal and the atlas for estimating brain
shift. Then, the pre-operative images are updated using the
obtained estimation to improve their accuracy. It is worth
noting that most time intensive steps are performed pre-
operatively, from 7 to 17 hours for FE model and atlas creation
[16]. However, intra-operative steps, when the atlas-based
method is utilized for estimation, need 11-13 minutes to be
performed [16]. As a result, if ACKF is more accurate and
requires less computational time than the atlas-based method,
it is preferable to be used for updating brain images. Moreover,
since the intra-operative steps do not need much time to be
done, it is possible to update the images several times during
surgery and minimize the effect of brain shift.

The computed α̂ minimizes (8), however it is needed to
investigate x̂ACKF as well; therefore, the following theorem, in
this regard, is presented.

Theorem 1: Consider equations (2), (3), (4), (5), and the
following general estimation of brain shift

x̂H = x̄+H (y −Cx̄) (12)

where x̂H is the n×1 vector estimation of x for a gain matrix
H , to be determined. If the covariance of b is unknown and
the estimation error is defined as

eH = x− x̂H (13)

then
I) The obtained estimation by ACKF, (11), is the best

unbiased estimation that minimizes max(Var (eH)),
II) ACKF employs an estimation of Cov(x) that results the

best covariance estimation error bounds.
Proof: Part I) The proof of this part is inspired from [13]. To
show that the estimation is unbiased, one needs to substitute
(3) in (12) and compute E [eH ], then it can be seen that
E [eH ] = 0.

The covariance of eH can be obtained by using (3), (4),
(12), and (13) as follows:

Cov(eH) = (I −HC)MCov(α)MT (I −HC)
T
. (14)

Because it is assumed that the covariance of b is unknown,
Cov(α) should be expressed in terms of that. Towards this
end, the relationship between α and b can be obtained by
employing (2) and (4) as follows:

KMα = b. (15)

By pre-multiplying MTKT in (15) and inverting
MTKTKM , we can get

α = (MTKTKM)−1MTKT b.

It is obvious that a similar relationship should be hold between
ᾱ and b̄; thus, one can get

Cov(α) = WQW T (16)

W : = (MTKTKM)−1MTKT (17)

where Q = QT > 0 is the covariance of b which is unknown.
By substituting (16) in (14), one can get

Cov(eH) = (I −HC)MWQW TMT (I −HC)
T
.
(18)

The trace of (18) is the variance of eH , given as

Var(eH) = Tr{Cov(eH)}. (19)

By utilizing the following row form

(I −HC)MW =


hT
1

hT
2
...

hT
n

 (20)

together with equations (18) and (19), we can write

Var(eH) =
n∑

i=1

hT
i Qhi. (21)

Since Q is a symmetric positive definite matrix, the following
inequality can be considered

λmin(Q)I ≤ Q ≤ λmax(Q)I. (22)

Using (21) and (22), the resulting equation is as follows:

λmin(Q)

n∑
i=1

hT
i hi ≤ Var(eH) ≤ λmax(Q)

n∑
i=1

hT
i hi. (23)

According to Minimax Theory [31], the gain matrix H should
minimize the maximum of Var(eH). Therefore, by employing
(20) and (23), the following cost function can be considered

JVar = Tr{(I −HC)MWW TMT (I −HC)
T }.

By calculating ∂JVar

∂H = 0 and utilizing (17), one can get

H = M(MTKTKM)−1MTCT

×
(
CM(MTKTKM)−1MTCT

)−1
.

(24)

By using H and (12), one can see that x̂H is equal to ACKF
estimation.

Part II) The best estimation of brain shift, x̂B, that has the
smallest estimation error covariance, can be obtained from
minimization of the following cost function over x̂B [32]:

J = E[(x− x̂B)
TΣ−1(x− x̂B)] + 2λT (y −Cx̂B)

where Σ is the covariance of x. The solution to this optimiza-
tion problem is given as [32]:

x̂B = x̄+ΣCT (CΣCT )−1(y −Cx̄). (25)
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It is assumed that Cov(b) is unknown; thus, Σ is also unknown
and we need to estimate it. By employing (4), (16), and (17)
one can get

Σ = M(MTKTKM)−1MTKTQKM

× (MTKTKM)−1MT .

If the estimation of Σ is considered as Σ̂, we can consider
the covariance estimation error, Σ̃, as follows:

Σ̃ = M(MTKTKM)−1MTKTQ

×KM(MTKTKM)−1MT − Σ̂.
(26)

By employing (22) and (26), one can get

λmin(Q)M(MTKTKM)−1MT − Σ̂ ≤ Σ̃

≤ λmax(Q)M(MTKTKM)−1MT − Σ̂.
(27)

Therefore, the estimation of Σ, that provides the best covari-
ance estimation error bounds, is

Σ̂ = ρM(MTKTKM)−1MT (28)

where ρ = λmin(Q)+λmax(Q)
2 . Since the eigenvalues of Q are

unknown, ρ is also unknown. Nevertheless, one can consider
any nonzero value for ρ, and that is because by substituting Σ̂
obtained from (28) as the estimation of Σ in (25), the resulting
equation for any nonzero ρ is equal to that of ACKF. In other
words, for the best estimation of Σ, the resulting estimation
obtained by (25) is equal to that of ACKF which completes
the proof. �

One may assume that employing a recursive form of (11)
could improve the accuracy of estimation. To investigate that,
the following equation can be considered

x̂I[k + 1] = x̂I[k] +M
(
MTKTKM

)−1
MTCT

× (CM
(
MTKTKM

)−1
MTCT )−1 (y −Cx̂I[k])

where x̂I[0] = x̄ and k = 0, 1, · · · . From (11) and the previous
equation, one can see that x̂I[1] = x̂ACKF and y = Cx̂ACKF.
Therefore, the second term on the right-hand side of the
preceding equation is equal to zero for k ≥ 1, and it can
be easily shown by induction that x̂I[k + 1] = x̂I[1] = x̂ACKF

for all k ≥ 0. Hence, the preceding recursive equation does
not result in the improvement of accuracy, and using (11) is
adequate for estimating brain shift. In addition, it is worth
noting that other recursive forms of (11) do not affect the
accuracy, but have an impact on the computational time of
estimation. On the other hand, as it is explained in the next
sections and validated by simulation results, ACKF is quite
fast; hence, it does not require a recursive modification.

Considering the presented Theorem 1, ACKF is the best
linear minimax estimator for brain shift when the covariance of
b is unknown and the atlas of brain deformations is employed.
In [13], it is also shown that CKF is the best linear minimax
estimator for brain shift when the covariance of b is unknown.
It is needed to compare ACKF with CKF method and see
whether ACKF is more accurate.

Lemma 1: Consider equations (2), (3), (4), and (5). If
ACKF estimation is given by (11) and CKF estimation, x̂CKF,

is [13]:

x̂CKF = x̄+K−1K−TCT (CK−1K−TCT )−1(y −Cx̄)
(29)

then
I) ACKF employs an estimation of Cov(x) that has better

covariance estimation error bounds,
II) ACKF is a better minimax estimator of brain shift with

lower maximum risk.
Proof: Part I) From (25) and (29), one can see that the

utilized estimation of Σ in CKF, Σ̂CKF, can be considered as

Σ̂CKF = ρK−1K−T (30)

where ρ is a nonzero scaler. In CKF, the atlas of brain defor-
mations is not employed; thus by using (2), the covariance of
x, ΣCKF, can be considered as follows:

ΣCKF = K−1QK−T . (31)

If the covariance estimation error of CKF, Σ̃CKF, be defined as

Σ̃CKF = ΣCKF − Σ̂CKF

then by using (22), (30), and (31), one can get

(λmin(Q)−ρ)K−1K−T ≤ Σ̃CKF ≤ (λmax(Q)−ρ)K−1K−T .
(32)

On the other hand, from Theorem 1, it can be seen that the
covariance estimation of ACKF, Σ̂ACKF, is equal to Σ̂ obtained
from (28). Hence, the following inequality can be considered
by substituting (28) into (27)

(λmin(Q)− ρ)M(MTKTKM)−1MT ≤ Σ̃ACKF

≤ (λmax(Q)− ρ)M(MTKTKM)−1MT
(33)

where Σ̃ACKF is the covariance estimation error of ACKF. As
can be seen, the scalars λmin(Q) − ρ and λmax(Q) − ρ are
common in (32) and (33); thus, in order to compare Σ̃CKF and
Σ̃ACKF, we need to analyze the following equation

U := K−1K−T −M(MTKTKM)−1MT . (34)

If the matrix U ≥ 0, then it can be concluded that Σ̂ACKF has
better estimation error bounds than Σ̂CKF. Towards this end, one
can pre- and post-multiply (34) by K and KT , respectively,
and get

KUKT = I −KM(MTKTKM)−1MTKT . (35)

In order to show that U ≥ 0, one needs to show that
KUKT ≥ 0. By computing KUKT

(
KUKT

)T
, which

is a positive semi definite matrix, we can see that

KUKT
(
KUKT

)T
= I−KM(MTKTKM)−1MTKT .

(36)
Therefore, by employing (35) and (36), it can be concluded
that KUKT ≥ 0.

Part II) If the estimation error of ACKF, eACKF, is defined as
eACKF = x− x̂ACKF, then by utilizing (17), (20), (23), and (24),
the following inequality can be obtained

λmin (Q) δACKF ≤ Var(eACKF) ≤ λmax (Q) δACKF
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where

δACKF = Tr
{
R−RCT

(
CRCT

)−1
CR

}
(37)

R : = M(MTKTKM)−1MT . (38)

For the estimation error of CKF, eCKF, one can consider the
following inequality in a similar way

λmin (Q) δCKF ≤ Var(eCKF) ≤ λmax (Q) δCKF

where eCKF = x− x̂CKF and

δCKF = Tr
{
P − PCT

(
CPCT

)−1
CP

}
(39)

P : = K−1K−T . (40)

Since ACKF and CKF are minimax estimators, it is required to
compare their maximum risks to determine which one is more
accurate [33]. Consequently, in order to show that ACKF is
more accurate than CKF, it is needed to show that

δACKF ≤ δCKF. (41)

Define V as

V := P − PCT
(
CPCT

)−1
CP −R

+RCT
(
CRCT

)−1
CR

(42)

then
δCKF − δACKF = Tr

{
V
}
.

By using (38), (40), and (42), it can be seen than V = V T .
Thus if V ≥ 0, all eigenvalues of V are non-negative. On the
other hand, we have

Tr
{
V
}
=

n∑
i=1

λi (V )

where λi (V ) is the i-th eigenvalue of V . Therefore, to show
(41), it is sufficient to show that V ≥ 0. By pre- and post-
multiplying V by K and KT and using (38) and (40), one
can compute KV KT

(
KV KT

)
and get

KV KT
(
KV KT

)
= KV KT .

Hence KV KT ≥ 0, which indicates that V ≥ 0. �
Lemma 1 states that ACKF is better than CKF in terms of

accuracy. It is worth to mention that ACKF is faster than CKF
as well because unlike CKF, it does not directly depend on the
inverse of K, which in practice is a very large matrix.

As shown in Lemma 1, ACKF is more accurate than CKF
since it utilizes the atlas of brain deformations. Nevertheless,
both ACKF and CKF employ the same computation method,
constrained Kalman filter, thus it can be concluded that uti-
lization of the atlas results in a better estimation. Another
method which uses the atlas of brain deformations is atlas-
based method, however it employs a different computational
method in comparison with ACKF. The following lemma is
presented to compare these two methods, ACKF and atlas-
based method, in terms of accuracy.

Lemma 2: Consider equations (2), (3), (4), and (5). If
ACKF estimation is given by (11) and the estimation of atlas-
based method, x̂A, is obtained as [15]:

x̂A = Mα̂A (43)

where α̂A is the solution of the following constrained opti-
mization problem [15]:

argmin
α̂A

(CMα̂A − y)
T
(CMα̂A − y)

subject to α̂Ai ≥ 0,

l∑
i=1

α̂Ai ≤ 1
(44)

then ACKF results in a more accurate estimation of brain shift.
Proof: As can be seen from the constraints in (44), the

feasible region is a subset of the following bound constraint

0 ≤ α̂Ai ≤ 1. (45)

The bound constraint can be written in a quadratic form as
follows [34]:

(α̂Ai − α̂′
Ai
)2 ≤ σ2

i (46)

where α̂′
Ai

= 1
2 and σi = 1

2 . Since (46) circumscribes an
ellipsoid around (45), the feasible region is also a subset of
(46). Therefore, the following optimization problem can be
considered

argmin
α̂A

(CMα̂A − y)
T
(CMα̂A − y)

subject to (α̂Ai − α̂′
Ai
)2 ≤ σ2

i .
(47)

In [34], an algorithm is presented to find the solution of
(47) identical to (44). The algorithm employs the penalty or
weighted approach to find the solution from minimization of
the following objective function

JA = (CMα̂A − y)
T
(CMα̂A − y)

+ (α̂A − α̂′
A)

T
D−1

ϵ (α̂A − α̂′
A) ,

(48)

where

Dϵ : = ϵD

D : = diag
(
σ2
i

)
,

and ϵ is the penalty parameter that sets the radius of the
ellipsoid. Minimization of (48) results the following equation
[34]:

α̂A = α̂′
A+

(
MTCTCM +D−1

ϵ

)−1
MTCT (y −CMα̂′

A) .
(49)

According to the algorithm, one should compute (49) for
different amounts of ϵ to find the solution that satisfies the
original constraints in (44). Let ϵ1 be the amount of penalty
parameter that solves the problem, then by using (43) we can
have
x̂A = Mα̂′

A

+M
(
MTCTCM +D−1

ϵ1

)−1
MTCT (y −CMα̂′

A) ,
(50)

where Dϵ1 = ϵ1D. By comparing (50) with (12), one can
see that if ᾱ = α̂′

A, the estimation of atlas-based method is
a special case of (12). Furthermore, as shown in Theorem 1,
the best estimation for the general form (12) is ACKF. Hence
ACKF is more accurate than the atlas-based method. �

It is worth to mention that in practice, the computational
time of ACKF is lower than atlas-based method, and it is
because the optimization in atlas-based method is solved by
numerical recursive methods.



7

III. SIMULATION

To test the fidelity of proposed approach, this section
provides simulation of brain shift and results of its estimation.
In this regard, brain shift is simulated using the governing
equations of brain and its boundary conditions. Then, the brain
shift is estimated using ACKF, CKF, and atlas-based method.

A. Brain Shift Simulation

To simulate brain shift, we need governing equations, ge-
ometry, and boundary conditions. The governing equations are
(1), and the geometry of brain is considered as a sphere 22
cm in diameter [13], [35]. The boundary conditions consist
of displacement, pressure, and force boundary conditions
which are shown in Figure 2 and were first reported in [36].
Figure 2.a shows displacement boundary conditions in which
the first region (white) represents the region under surgery and
is stress free. The second region (light gray) which is in contact
with the cranial wall, the interior wall of the skull, is a slip
boundary condition. Therefore, it can move along the cranial
wall, but movement in the normal direction is not permitted.
The third region (dark gray) is associated with the brain stem
and is fixed. Figure 2.b expresses pressure boundary conditions
and consists of a region above (region 1) and a region below
(region 2) the level of intra-operative CSF drainage; therefore,
region 1 (gray) is exposed to atmospheric pressure and region 2
(white) is a non-draining surface. The plane of intra-operative
CSF drainage, which is the boundary between regions 1 and
2 in Figure 2.b, is perpendicular to the direction of gravity
which is the force boundary condition.

Fig. 2: Boundary conditions. a) Displacement Boundary condi-
tions: Surface 1 is stress free. Surface 2 moves along the skull.
Surface 3 is fixed. b) Pressure boundary conditions: Surface 1
is at atmospheric pressure. Surface 2 allows no fluid drainage.

To simulate brain shift, the model is solved by COMSOL
Multiphisycs on a computer with Intel Quad Core i5 with 4 GB
of ram running Windows 7 64 bit, and the result is depicted
in Figure 3. It can be seen that the brain is deformed, which
in practice degrades the accuracy of neuronavigation systems.
Also, the largest brain shift has occurred on the exposed brain
surface which is a result of opening the dura and gravity. In
the next section, the brain shift is estimated using ACKF and
compared to the estimation of other methods.

B. Brain Shift Estimation

In order to estimate brain shift, as shown in Figure 1,
it is required to perform pre- and intra-operative steps. The

Fig. 3: Result of brain shift simulation.

next two sections explain these steps which are done in this
simulation.

1) Pre-operative Phase: The considered geometry of brain,
i.e., a sphere 22 cm in diameter, and the brain model (1) are
employed for constructing the FE model of brain. Then, using
an approximation of craniotomy size and head orientation,
twelve nodes on the brain surface are used for obtaining the
output model (3). It is assumed that during surgery, these nodes
are located on the exposed brain surface and their deformation
can be captured using intra-operative brain surface imaging.
On the other hand, an important pre-operative step in the
proposed estimation method is the process of atlas creation
to ensure that the range of possible boundary conditions
are employed to make the atlas M . To construct the atlas,
three craniotomy sizes, three CSF drainage levels, and 65
orientations are employed, resulting in 585 displacement data
sets for the atlas. It should be mentioned that utilized boundary
conditions in the simulation of brain shift are not part of
the atlas. Furthermore, to investigate the performance and
robustness of the proposed method, it is needed to analyze
the obtained brain shift estimation for atlas with perturbed
displacement data [12]. Towards this end, 5% white Gaussian
noise is added to the atlas for building a perturbed set of brain
deformations. In addition, similar to [13], the initial brain shift
estimation is considered equal to zero, i.e. x̄ = 0.

2) Intra-operative Phase: It is assumed that the deforma-
tion of considered twelve nodes on the exposed brain surface
are obtained intra-operatively. Then, these sparse measure-
ments are used for estimating the brain shift.

C. Simulation Results

By employing the created atlas and sparse measurements
from the previous section, ACKF resulted an estimation of
brain shift which is shown in Figure 4.

By comparing Figures 3 and 4, it seems that ACKF has
resulted an estimation close to the actual brain shift. However,
these figures merely represent surface brain shift and its
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Fig. 4: Result of ACKF brain shift estimation.

estimation, and to perform a more detailed comparison, it
is required to compare and evaluate sub-surface brain shift
estimation. Therefore, the vectors x and x̂ACKF are depicted
in Figure 5 to express brain shift and its estimation for the
entire sphere. It can be easily seen that the obtained brain
shift estimation is also accurate for sub-surface tissues, and in
turn, it can be used for improving pre-operative brain images.

Degrees of freedom ×104

0 1 2 3 4 5 6 7 8 9

x
(c
m
)

-1.5

-1

-0.5

0

0.5

Degrees of freedom ×104

0 1 2 3 4 5 6 7 8 9

x̂
A
C
K
F
(c
m
)

-1.5

-1

-0.5

0

0.5

Fig. 5: Brain shift vector x and its ACKF estimation x̂ACKF.

In order to validate Lemmas 1 and 2, brain shift is also
estimated using CKF and the atlas-based method, and their
estimation errors together with ACKF are shown in Figure 6.
The figure reveals that ACKF has resulted in a much better
estimation in terms of maximum error. To summarize the per-
formance of all three estimation methods, the computational
cost and specifications of estimation errors in Figure 6 are
reported in Table II. Table II presents computational time,
norm of error, maximum absolute error, and mean of absolute
error for the methods. It can be seen that ACKF is not only

able to compensate brain deformation more accurately, but
also needs less intra-operative computation time. As shown in
Lemmas 1 and 2, better accuracy is a result of using the atlas
and constrained Kalman filter. Moreover, ACKF needs less
computations since, unlike CKF, it does not need to compute
the inverse of K, which is a large matrix. In addition, unlike
the atlas-based method, its solution is not obtained by recursive
numerical methods.
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Fig. 6: Estimation error of CKF eCKF, atlas-based method eA,
and ACKF eACKF.

TABLE II: Comparison over estimation error and intra-
operative computational time of CKF, atlas-based method, and
ACKF.

Method tintra
(s)

norm(e)
(cm)

max(|e|)
(cm)

mean(|e|)
(cm)

CKF 118.8 47.5 0.64 0.1
atlas-based 184.6 18.8 0.58 3.67×10−2

ACKF 5.4 4.5 0.19 7.86×10−3

In order to test the robustness of ACKF, the atlas with
noise is utilized for obtaining estimations using the atlas-based
method and ACKF, and the results are shown in Figure 7. It is
obvious that even when the atlas is perturbed, ACKF provides
preferable estimations. For a more detailed comparison, the
specifications of the estimation errors and computational times
are illustrated in Table III. The results show that as long as the
actual brain shift is contained in the atlas, ACKF is relatively
insensitive to noise. In other words, in order to obtain an
accurate estimation, it is only required to exist an unknown
vector α that satisfies (4). Therefore, if appropriate boundary
conditions are utilized for constructing the atlas, it can be



9

guaranteed that ACKF performs well and provides accurate
estimations.

Atlas I: With Noise Atlas II: Without Noise
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ACKF

Fig. 7: Boxplot of absolute estimation error for atlas with and
without noise.

TABLE III: Comparison over estimation error and intra-
operative computational time of atlas-based method and ACKF
for atlas with noise.

Method tintra
(s)

norm(e)
(cm)

max(|e|)
(cm)

mean(|e|)
(cm)

atlas-based 194.6 18.8 0.58 3.67×10−2

ACKF 5.5 4.7 0.21 8.04× 10−3

IV. CONCLUSIONS

In this paper, an estimation method based on Atlas of brain
deformations and Constrained Kalman Filter (ACKF) was
proposed to estimate brain shift intra-operatively. It was shown
that ACKF results the best estimation when the covariance of
boundary conditions of the brain model is unknown. Moreover,
the proposed method was compared with two existing methods
and it was demonstrated that consequences of employing
ACKF is a more accurate estimation and less computational
time which make the method suitable for the use in the
operating room.
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